China OEM OEM 357822 46548452 Auto Engine Timing Belt Tensioner For FIAT 500(312)1.2 (312AXA1A) (312AXA1A) axle fix cost

Product Description

MIC NO. OEM.NO APPLICATION YEAR PHOTO
TB34FI9501 357822
FIAT : 46548452
FIAT : 46756902
FIAT : 46782739
FIAT : 55191969
FIAT : 55195571
FIAT : 551955710
FIAT : 55232827
FIAT : 55242399
CZPT : 1535429
CZPT : 9S516A228AA
GENERAL MOTORS : 55232827
OPEL : 125718
OPEL : 125719
OPEL : 134
OPEL : 55232827
VAUXHALL : 55232827
VAUXHALL : 55242399
ABARTH  500C / 595C / 695C (312_) 1.4 (312.AXD1A)
ABARTH  GRANDE PUNTO (199_) 1.4 (199.AXN1B)
ABARTH  PUNTO (199_) 1.4 (199.AXX1B)
ALFA ROMEO  GIULIETTA (940_) 1.4 BiFuel (940FXA1A, 940FXT1A)
ALFA ROMEO  MITO (955_) 1.4 (955.AXB1B, 955.AXU1A)
CHRYSLER  DELTA 1.4
CHRYSLER  YPSILON 1.2
FIAT  500 (312_) 1.2 (312AXA1A)
FIAT  500 C (312_) 1.2 (312CXA1A, 312AXA1A)
FIAT  500L (351_, 352_) 1.4 (199LYB1B)
FIAT  BRAVO II (198_) 1.4 (198AXA1B)
FIAT  DOBLO Box Body/Estate (263_) 1.4
FIAT  DOBLO Cargo (223_) 1.4
FIAT  DOBLO MPV (119_, 223_) 1.4
FIAT  DOBLO Platform/Chassis (263_) 1.4
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225AXA1A, 225BXA1A)
FIAT  GRANDE PUNTO (199_) 1.2
FIAT  GRANDE PUNTO (199_) 1.4 (199AXB11, 199AXB1A, 199BXB1A, 199AXL1A)
FIAT  IDEA (350_) 1.2 16V
FIAT  IDEA (350_) 1.4
FIAT  LINEA (323_, 110_) 1.4
FIAT  PALIO (178_) 1.2
FIAT  PALIO (178_) 1.4
FIAT  PALIO Weekend (178_, 173_, 373_, 374_) 1.2
FIAT  PHangZhou (141_) 1100
FIAT  PHangZhou (169_) 1.1 (169.AXA1A)
FIAT  PHangZhou (169_) 1.2 (169.AXB11, 169.AXB1A)
FIAT  PHangZhou (169_) 1.4 (169AXE1B)
FIAT  PHangZhou (312_, 319_) 1.2 (312PXA1A)
FIAT  PHangZhou Van (141_) 1.1
FIAT  PHangZhou Van (169_) 1.2
FIAT  PHangZhou Van (169_) 1.4 Natural Power
FIAT  PHangZhou VAN (312_, 519_) 1.2 (312CXA1A, 312DXA1A)
FIAT  PUNTO (188_) 1.2 16V 80 (188.233, .235, .253, .255, .333, .353, .639,...
FIAT  PUNTO (188_) 1.4
FIAT  PUNTO (199_) 1.2 (199AXZ1A, 199BXZ1A)
FIAT  PUNTO (199_) 1.4 (199AXB1A, 199BXB1A, 199BXB11, 199AXB11)
FIAT  PUNTO EVO (199_) 1.2
FIAT  PUNTO EVO (199_) 1.4 (199AXB1A)
FIAT  PUNTO Van (188_) 1.2 60
FIAT  PUNTO Van (199_) 1.4 (199BXB1A, 199AXL1A, 199AXB1A)
FIAT  QUBO (225_) 1.4 (225AXA1A, 225CXA1A)
FIAT  SIENA (178_, 172_) 1.0 Flex
FIAT  SIENA (178_, 172_) 1.2
FIAT  SIENA (178_, 172_) 1.4
FIAT  STILO (192_) 1.2 16V (192_XA1B)
FIAT  STILO (192_) 1.4 16V
FIAT  STILO Multi Wagon (192_) 1.4 16V
FIAT  STRADA Pickup (178_) 1.2
FORD  KA (RU8) 1.2
LXIHU (WEST LAKE) DIS.A  DELTA III (844_) 1.4 (844.AXA1A)
LXIHU (WEST LAKE) DIS.A  MUSA (350_) 1.4 (350.AXA11, 350.AXA1A)
LXIHU (WEST LAKE) DIS.A  YPSILON (312_) 1.2 (312.PXA1A, 312.YXA1A)
LXIHU (WEST LAKE) DIS.A  YPSILON (843_) 1.2 (843.AXA1A)
OPEL  COMBO Box Body/Estate (X12) 1.4 (B05)
OPEL  COMBO Combi / Tour (X12) 1.4 (C26, D26, E26, C06)
VAUXHALL  COMBO Mk III (D) Box Body/Estate (X12) 1.4
2008-
2007-2571
2012-
2011-2017
2011-
2011-
2011-
2007-
2009-
2012-
2007-2014
2011-
2005-
2005-
2571-
2009-
2005-
2005-2015
2004-
2003-
2007-
2000-2012
2005-
1996-2001
1995-2003
2003-
2003-
2006-
2012-
2000-2004
2571-
2009-
2012-
1999-2006
2003-2012
2012-
2012-
2009-2012
2009-2012
2000-2009
2012-
2009-
2000-2009
2001-2009
2007-2009
2002-2006
2005-2006
2005-2008
1999-2006
2008-2016
2008-2014
2004-2012
2011-
2003-2011
2012-
2012-
2011-

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(",").forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: One Year
Car Make: FIAT
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

belt tensioner

What are the reliability and durability aspects of belt tensioners in ensuring consistent belt tension?

Belt tensioners play a crucial role in ensuring consistent belt tension in belt-driven systems. The reliability and durability of belt tensioners are essential factors in maintaining optimal belt performance and preventing issues such as slippage, excessive wear, or premature failure. Here's a detailed explanation of the reliability and durability aspects of belt tensioners in ensuring consistent belt tension:

  • Design and Construction:
  • The design and construction of belt tensioners are critical for their reliability and durability. High-quality materials, precision engineering, and robust construction techniques are employed to ensure that tensioners can withstand the forces and loads encountered in belt-driven systems. The design should incorporate features that minimize stress concentrations, prevent premature wear, and provide long-lasting performance.

  • Load Capacity:
  • Belt tensioners must have adequate load capacity to handle the tension forces exerted by the belt system. A properly sized tensioner will allow for the consistent application of the desired tension level, even under varying loads and operating conditions. Insufficient load capacity can lead to insufficient tension, resulting in belt slippage, reduced power transmission, and potential system failure.

  • Resistance to Wear and Fatigue:
  • Reliable belt tensioners are designed to resist wear and fatigue over extended periods of operation. They should be able to withstand the continuous movement and contact with the belt without experiencing excessive wear or deformation. High-quality materials, surface treatments, and lubrication mechanisms may be employed to enhance the tensioner's resistance to wear and fatigue.

  • Corrosion and Contamination Resistance:
  • Belt tensioners in certain environments may be exposed to corrosive substances, moisture, or contaminants such as dust and debris. To ensure reliability and durability, tensioners can be designed with corrosion-resistant materials, protective coatings, or sealing mechanisms. These features help prevent the degradation of tensioner components and maintain their performance in challenging operating conditions.

  • Temperature Stability:
  • Temperature fluctuations can affect the performance and longevity of belt tensioners. Reliable tensioners are engineered to withstand the temperature extremes commonly encountered in industrial or automotive applications. They may incorporate materials with high-temperature resistance or thermal management mechanisms to maintain consistent performance and prevent thermal degradation.

  • Lubrication and Friction Management:
  • Proper lubrication and friction management are crucial for the reliable operation of belt tensioners. Lubricants or bearing configurations are employed to minimize friction, reduce wear, and prevent premature failure. Adequate lubrication and friction management contribute to the consistent operation and longevity of the tensioner, ensuring optimal belt tension over time.

  • Maintenance and Inspection:
  • Regular maintenance and inspection are essential for ensuring the reliability and durability of belt tensioners. Periodic checks for signs of wear, proper alignment, and tension adjustment are necessary to identify potential issues and take corrective measures. Following the manufacturer's recommended maintenance schedule and procedures helps prolong the life of the tensioner and maintain consistent belt tension.

In summary, the reliability and durability of belt tensioners are crucial for ensuring consistent belt tension in belt-driven systems. The design and construction of tensioners, their load capacity, resistance to wear and fatigue, corrosion and contamination resistance, temperature stability, lubrication and friction management, as well as regular maintenance and inspection, all contribute to their ability to maintain optimal belt tension over time. By selecting high-quality tensioners and following proper maintenance practices, consistent belt tension can be achieved, leading to reliable and efficient operation of belt-driven systems.

belt tensioner

Can you explain the principles behind belt tensioner operation and adjustment?

Belt tensioners operate based on a set of principles aimed at maintaining the proper tension in belts. They are designed to apply and control the tension in the belt drive system, ensuring optimal performance and longevity. Here's a detailed explanation of the principles behind belt tensioner operation and adjustment:

  • Tensioning Mechanism:
  • Belt tensioners typically consist of a mechanical mechanism that applies force to the belt, adjusting its tension. The tensioning mechanism can vary depending on the specific design and application. Common types of tensioners include spring-loaded tensioners, hydraulic tensioners, and automatic tensioners. These mechanisms are designed to exert a specific amount of force on the belt, maintaining the desired tension level.

  • Proper Tension Range:
  • Each belt has a specific tension range recommended by the manufacturer. This range ensures optimal power transmission, minimal slippage, and reduced wear. Belt tensioners are adjusted to operate within this recommended tension range. It is important to follow the manufacturer's guidelines or specifications to determine the appropriate tension for a specific belt and application.

  • Belt Deflection:
  • During operation, belts experience a certain degree of deflection or sag between the pulleys. Belt tensioners account for this deflection and compensate for it by applying the appropriate tension. The tensioner mechanism is adjusted to ensure that the belt maintains the desired tension even when subjected to deflection. This helps to prevent excessive slack or tightness in the belt, optimizing power transmission and minimizing wear.

  • Adjustment and Maintenance:
  • Belt tensioners require periodic adjustment and maintenance to ensure optimal performance. The adjustment process involves inspecting the belt tension, evaluating its deflection, and making necessary adjustments to bring it within the recommended tension range. Tensioners may feature adjustment bolts, nuts, or other mechanisms that allow for precise tension adjustments. It is essential to follow the manufacturer's instructions and use appropriate tools to adjust the tensioner correctly.

  • Monitoring and Inspection:
  • Regular monitoring and inspection of belt tensioners are crucial for their effective operation. This involves visually examining the tensioner for signs of wear, damage, or misalignment. It is also important to check the belt tension regularly using appropriate tension measuring tools or techniques. By monitoring the tensioner and the belt's condition, any issues can be identified and addressed promptly, ensuring optimal tension and preventing potential problems.

  • Consideration of Environmental Factors:
  • Environmental factors such as temperature, humidity, and operating conditions can influence belt tension. Belt tensioners should be adjusted and maintained considering these factors. For example, temperature changes can cause the belt to expand or contract, affecting its tension. Tensioners may incorporate features to compensate for such variations, ensuring consistent tension under different environmental conditions.

In summary, belt tensioner operation and adjustment are based on principles that involve applying the appropriate tension to the belt, accounting for deflection, operating within the recommended tension range, and considering environmental factors. Tensioners are adjusted and maintained to ensure optimal power transmission, minimize wear, and prevent issues such as slippage or excessive tension. Regular monitoring and inspection of tensioners and belts are essential for their reliable operation and longevity.

belt tensioner

Can you explain the importance of proper belt tensioning in machinery and automotive applications?

Proper belt tensioning is of utmost importance in machinery and automotive applications as it directly affects the performance, efficiency, and reliability of belt-driven systems. Here's a detailed explanation of the importance of proper belt tensioning:

  1. Power Transmission Efficiency:
  2. Proper belt tensioning ensures efficient power transmission from the driving pulley to the driven pulley. When a belt is under-tensioned, it can slip on the pulleys, resulting in a loss of power and reduced efficiency. On the other hand, over-tensioning can cause excessive friction, increased wear, and unnecessary strain on the components. By maintaining the optimal tension, the belt can effectively transfer power without slipping, maximizing the overall efficiency of the machinery or vehicle.

  3. Belt Life and Reliability:
  4. Correct belt tensioning significantly impacts the lifespan and reliability of the belt itself. Insufficient tension can lead to belt slippage, which causes wear and can result in the premature failure of the belt. Conversely, excessive tension can accelerate wear, increase stress on the belt, and cause it to stretch or deform over time. By maintaining the proper tension, the belt experiences less wear and fatigue, leading to a longer service life and improved reliability.

  5. Reduced Noise and Vibration:
  6. Improper belt tensioning can contribute to excessive noise and vibration in machinery and automotive systems. When a belt is either under-tensioned or over-tensioned, it can cause vibrations that propagate through the system, leading to noise and discomfort. Proper tensioning helps to minimize belt vibrations, ensuring smoother operation and reducing noise levels, which is particularly important in applications where noise reduction is desired, such as in automotive interiors or precision machinery.

  7. Optimal Load Distribution:
  8. The correct tension in a belt allows for the proper distribution of the load across the belt and the pulleys. Insufficient tension can result in uneven load distribution, causing localized stress on certain sections of the belt and pulleys. This can lead to accelerated wear and potential failure of the system. Proper tensioning ensures that the load is evenly distributed, minimizing stress concentrations and promoting balanced wear, thereby improving the longevity and performance of the belt drive system.

  9. Improved Safety:
  10. Proper belt tensioning is crucial for maintaining safe operation in machinery and automotive applications. Inadequate tension can lead to unexpected belt slippage, which can result in sudden loss of power, reduced braking effectiveness, or compromised operation of auxiliary systems. On the other hand, excessive tension can generate excessive heat, leading to belt degradation or even catastrophic failure. By ensuring the correct tension, the risk of these safety hazards is minimized, enhancing the overall safety of the equipment or vehicle.

In conclusion, proper belt tensioning is essential in machinery and automotive applications to ensure efficient power transmission, prolong belt life, reduce noise and vibration, achieve optimal load distribution, and enhance safety. Following manufacturer guidelines and regularly inspecting and adjusting the belt tension can help maintain the desired tension levels and maximize the performance and reliability of belt-driven systems.

China OEM OEM 357822 46548452 Auto Engine Timing Belt Tensioner For FIAT 500(312)1.2 (312AXA1A) (312AXA1A)   axle fix costChina OEM OEM 357822 46548452 Auto Engine Timing Belt Tensioner For FIAT 500(312)1.2 (312AXA1A) (312AXA1A)   axle fix cost
editor by CX 2024-04-13